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Emerging Wearable Interfaces and Algorithms for
Hand Gesture Recognition: A Survey

Shuo Jiang, Peiqi Kang, Xinyu Song, Student Member, IEEE, Benny P.L. Lo, Senior Member, IEEE,
and Peter B. Shull*, Member, IEEE

Abstract—Hands are vital in a wide range of fundamental daily
activities, and neurological diseases that impede hand function
can significantly affect quality of life. Wearable hand gesture
interfaces hold promise to restore and assist hand function and
to enhance human-human and human-computer communication.
The purpose of this review is to synthesize current novel sensing
interfaces and algorithms for hand gesture recognition, and
the scope of applications covers rehabilitation, prosthesis con-
trol, exoskeletons for augmentation, sign language recognition,
human-computer interaction, and user authentication. Results
showed that electrical, mechanical, acoustical/vibratory, and
optical sensing were the primary input modalities in gesture
recognition interfaces. Two categories of algorithms were iden-
tified: 1) classification algorithms for predefined, fixed hand
poses and 2) regression algorithms for continuous finger and
wrist joint angles. Conventional machine learning algorithms,
including linear discriminant analysis, support vector machines,
random forests, and non-negative matrix factorization, have been
widely used for a variety of gesture recognition applications,
and deep learning algorithms have more recently been applied
to further facilitate the complex relationship between sensor
signals and multi-articulated hand postures. Future research
should focus on increasing recognition accuracy with larger hand
gesture datasets, improving reliability and robustness for daily
use outside of the laboratory, and developing softer, less obtrusive
interfaces.

Index Terms—Rehabilitation, human-computer interaction,
machine learning, electromyography, forcemyography

I. INTRODUCTION

HANDS are essential for performing daily activities in-
cluding grabbing a cup or conveying information to

others, such as waving goodbye. As the global population ages,
the incidence of neurological diseases is causing increasing
loss of hand function leading to decreased quality of life [1],
[2]. Automated hand gesture recognition can be integrated
with games to help assess rehabilitation progress with active
engagement [3] or combined with orthoses [4] to support
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grasp strength. Similarly, upper extremity amputees often
retain intention and neural motor control [5], and gesture
recognition interfaces can decode human intention commands
for prosthesis manipulation movement control [6] or grasping
force control [7], enabling independent living. These hand
gesture recognition interfaces not only enable home-based
daily activity but also ease the load of specialized clinicians
in hospitals.

Hands are the primary form of communication for the hear-
ing impaired [8], and hand gesture recognition interfaces can
enable communication with the unimpaired via automatic sign
language translation [9]. Hand gesture recognition has also
shown potential to provide more intuitive communication for
a variety of emerging human-computer interaction applications
[10], including gesture interaction with smartphones [11], vir-
tual reality (VR)/augmented reality (AR) [12], and in-vehicle
menu control to avoid visually searching for control while
driving [13]. New materials, novel sensing techniques, and
miniaturization of embedded systems can enable more intuitive
and comfortable wearable interfaces, while the advances in
machine learning algorithms hold promise for more accurate,
powerful, and robust classification and tracking performance.

Algorithm capability for hand gesture recognition has im-
proved significantly in recent years. Previous approaches based
on simple threshold control or fuzzy logic primarily rely on
human knowledge; in contrast machine learning has become
more dominant in recent years, including statistical learning
approaches like expectation maximization and maximum a
posteriori [14]. Deep learning techniques [15], widely for
image classification, include convolutional neural networks
(CNN) [16], transfer learning [17], and meta learning [18]
are also emerging in hand gesture recognition applications
to improve the performance and solve biological difference
problems without relying on apriori knowledge.

The purpose of this review is to comprehensively analyze
the array of recent novel wearable interfaces and algorithms
for hand gesture recognition and to identify existing challenges
that currently hinder practical use. Selected papers used wear-
able sensing methods attached to the human body at one or
more of the following locations: upper limb, wrist, back of
the hands, and fingers. Hand gesture and/or pose tracking was
required to perform at least one of the following: classify static
gesture categories, estimate dynamic finger flexing angles,
or classify hand movement trajectories. Articles based on
computer vision methods or based on data gloves for hand
gesture recognition were excluded as these have been the topic
of recent reviews [8], [19], [20]. In Section II, we provide an
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overview of applications of wearable hand gesture recognition
based on hand function. Section III describes categories of
interfaces and sensing principles with a discussion of their
advantages and limitations. In Section IV, we introduce con-
ventional and emerging novel decoding algorithms, and finally,
in Section V, we present potential research directions for hand
gesture recognition.

II. SCOPE OF APPLICATIONS

There are two general purposes of hand gestures: functional
grasping and descriptive communication. Wearable interfaces
can be utilized for gesture recognition in both areas to bridge
the gap between human intention and human-machine or
human-human communication (Fig. 1). This can both improve
quality of life and enable more intuitive interaction. Gener-
ally, humans freely move their hands and fingers to perform
functional movements or to convey information. However, in
some cases, the transmission of intention is obstructed, or the
expression is degraded by keyboards due to hardware limi-
tations for more direct and intuitive expression. In addition,
hand gestures typically involve coordinated movement of all
5 fingers and are often relatively complex, consisting of one or
more combinations of the following: finger flexion/extension,
finger abduction/adduction, wrist pronation/supination, wrist
radial/ulnar deviation, wrist flexion/extension, forearm prona-
tion/supination, and hand position translations. In many appli-
cations, it is unrealistic and unnecessary to capture and classify
every possible hand and finger pose, and instead defining a
target hand gesture set can enable adequate performance for
a given specific application. The following sections introduce
the major applications of wearable hand gesture interfaces and
the corresponding gesture sets.

For functional grasping, rehabilitation is used for severe
stroke patients and others who partially lose motor function
and need an exoskeleton to help them carry out daily activities
or for rehabilitation. There are prosthesis/exoskeleton controls
for amputee patients with total motor function loss to assist
with daily living, and for able-bodied group for augmentation
including workload reduction. Sign language recognition is
used for human-human communication, and intuitive human
computer interaction (HCI) is used to enable humans to
communicate with smart hardware while user authentication
can also be achieved via hand gesture related signals to ensure
the security during communication.

A. Rehabilitation

Neurological diseases, such as stroke and cerebral palsy,
spinal cord injuries, and brachial plexus injuries can cause
long-term motor function impairment [22], [23]. Hand motor
function is closely related to activities of daily livings (ADLs),
which significantly impacts quality of life [24]. Thus, patients
with hand motor dysfunction need effective rehabilitation,
which should be goal-oriented, intensive, and repetitive [25].
Conventional rehabilitation relies heavily on the guidance and
assistance of clinicians and physiotherapists, which is labor-
intensive and expensive. Thus, rehabilitation can impose a
significant burden on clinicians, physiotherapists and patients.

In addition, it is difficult for discharged patients to persist in
effective home-based rehabilitation due to repetitive, uninter-
esting rehabilitation protocols in unsupervised environments
[26]. To overcome these problems, many studies have focused
on the development of wearable systems for hand function
rehabilitation [1], [2]. For patients with neurological diseases,
although hands movements are partially inhibited from brain
intention, existing neural information can be detected through
wearable interfaces. The detected information can reflect reha-
bilitation stages for assessment or help to enable exoskeleton
to assist ADLs. There are two main methods for this: unas-
sisted rehabilitation systems for patients with moderate to high
hand function and assisted active rehabilitation for moderate-
to low-functioning patients as described below.

1) Unassisted Training: For patients with moderate to
high function, unassisted training is best for rehabilitation
because it maximizes neurological restoration [27]. Therefore,
some movement-classification-based unassisted wearable sens-
ing systems have been developed to guide patients to perform
goal-oriented movements via serious games, which could opti-
mize patient engagement [28]. By attaching one accelerometer
on the back of hands and three surface electromyography
(sEMG) sensors around the forearm, a game-based upper
limb rehabilitation program was developed for children with
cerebral palsy. The accelerometer was used to detect the
rotation of the tracking wrist, and sEMG was used to detect the
flexion and extension of the fingers [29]. In addition, an inertial
measurement unit (IMU) attached to the wrist has been used
to measure the rehabilitation progress and encourage patients
to use their affected hand by monitoring ADLs continuously in
both clinical and non-clinical scenarios; three tasks involving
forearm extension/flexion and rotation were classified by a
lightweight CNN [30]. IMUs have also been attached to the
wrists to monitor stroke patient ADLs and encourage the use
of affected limbs to perform more goal-oriented tasks. Goal-
directed and non-goal-directed movements were classified by
logistic regression [31].

2) Assisted Training: For patients with low to moderate
mobility, robot-assisted active training could increase patient
compliance to be involved in rehabilitation and be more effec-
tive than passive training [32], [33]. Thus, pattern recognition
techniques are critical for a robotics-based system to provide
accurate motion control. sEMG and IMUs have been used to
detect motor intention. Many robotics-based systems provide
bilateral grasp rehabilitation, which use muscle sEMG of the
unaffected hand and forearm for classification and trigger
the execution to drive the affected limbs of the patients for
rehabilitation training [34], [35]. Other studies have focused
on intention detection based on sEMG signals from the af-
fected side of stroke patients [36]–[38]. However, the sEMG-
based classification results of movement intentions of stroke
survivors are less accurate than those of healthy people due to
neural damage.

B. Prosthesis Control

For upper extremity amputees, there often still exist neural
signals in the residual limb, and decoding these neural signals
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Fig. 1. Wearable hand gesture interfaces connect human intention with smart hardware to facilitate functional grasping and descriptive communication for a
variety of applications, including rehabilitation, prosthesis control, exoskeletons for augmentation [21],sign language recognition, human-computer interaction,
and user authentication.

can reflect the human intention for hand gestures which is
crucial for intuitive prosthesis control. This can solve daily-
living problems, including drinking water and grabbing objects
without the help of caregivers. Since amputees have lost
their hands, traditional vision-based methods cannot decode
their intentions, and current commercially available prostheses
are mainly based on on-off control that is cumbersome and
has only simple open-loop functions. In this case, wearable
interfaces can act as an intuitive way to decode amputees’
gesture intentions for controlling the robotic prosthesis with
more degrees of freedom (DoFs). The wearable interface is
the key to realizing closed-loop functional control which is
the trend in cutting-edge research [39]. They can help realize
continuous control of a prosthesis finger angle, or with contin-
uous force level control (also referred as proportional control),
enable more dexterous control of a prosthesis and provide a
better experience in their daily lives. Currently, the wearable
interface is dominant in prosthesis control areas and is mostly
realized through neural signals, including sEMG [5] or the
partial force/deformation information in the patients’ residual
arms. In this prosthesis control application, the target gesture-
controlling commands not only contain visible information
like position/angle but also deal with invisible information,
including torque and force. Most of the target gestures are
motivated by prosthesis capabilities for daily grasping activi-
ties [40]. Thus, based on the scenarios and requirements, many
researchers define their own target gestures and develop their
own datasets, which may make direct and fair comparison
across different research difficult, and thus cause confusion
for new researchers. Fortunately, there are still some popular
open datasets, which not only serve as good examples for

experimental protocol design on the application side but also
offer good avenues for researchers who focus on the algorithm
side. Popular public open datasets include NinaPro [41], CSL-
HDEMG [42], and CapMyo [43]. A detailed summary and
descriptions of these datasets can be found in [44].

Like amputees, some stroke patients’ motor function im-
pairments are too severe to restore, which may cause lifelong
disability. These patients need assistive devices to help with
accomplishing ADLs [25]. Compared to rehabilitation sys-
tems, these daily assistive devices are more like prostheses,
and more integral to the patient’s daily life [24]. Therefore,
the detection of reach and grasp intention becomes the key
point in the related research. A light, wearable soft-robotic
orthosis was developed to support ADLs. IMUs were placed
on the back of the hand, ulnar styloid, and phalanges of fingers
to classify the reach and grasp intention and to detect the
grasp intention as soon as possible. This then triggered the
orthosis to support the patient’s grip strength [4]. Forearm
sEMG-based intention detection has also been employed to
control assistive exoskeletons or hand prostheses [45]. Most of
the movements were selected from clinical-based assessment
scales, and are highly related to ADLs, including wrist flexion,
wrist extension, mass flexion, mass extension, hook-like grasp,
opposition (hand pinch) and thumb adduction (lateral hand
pinch), cylinder grip, and spherical grip [36]–[38], [46].

C. Exoskeletons for Augmentation

Although the main application of exoskeletons is still in
the rehabilitation of stroke patients, they can also act as
an effective way to enhance able-bodied people’s capability.
Because hands are humankind’s main manipulators, hand
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gesture recognition technology can be used for intuitive control
of capability augmentation. The capability augmentation for
an able-bodied group can be categorized into two aspects:
strength augmentation and function augmentation. For strength
augmentation, Al-Fahaam et al. [47] proposed an artificial
muscles-based exoskeleton for decreasing workers’ manual
efforts in grasping objects. For function augmentation, super-
numerary robotics, including extra arms [21], third hand, and
extra fingers, can help extend the function of humanity and
realize the vision of Man-Computer Symbiosis [48]. The future
development of the hand exoskeletons should be focused on
making lightweight, soft, low cost, high load capacity systems
[49]–[51].

D. Sign Language Recognition
Gestures are the decoding of brain intention, and some sim-

ple and commonly used gestures, including the OK sign, can
be easily and universally understood. However, for deaf and
hearing impaired, sign language, is the primary means of com-
munication and consists of complex gesture linguistics. How-
ever, the vast majority of the unimpaired population does not
recognize sign language. Thus, a significant communication
gap exists between the hearing impaired and a majority of the
unimpaired population. Because sign language is frequently
used by hearing impaired in daily living situations, computer
vision based approaches are not suitable because of privacy
concerns, sensitivity to lighting conditions, and higher energy
consumption. In contrast, wearable interfaces can provide a
ubiquitous and low-energy approach. Although data-glove-
based systems can achieve an relatively high classification
rates [52], they have not been widely adopted likely because
they are too cumbersome for practical daily living use and
are not suitable for natural human-computer interaction [9],
[53], [54]. Other low-cost and ubiquitous wearable interfaces
can serve as alternatives to data gloves. With the advances
in material science, epidermal e-skin sensors provide similar
principles for capturing fingers’ bending angles but offer better
user experiences including epidermal-iontronic sensing [55],
and carbon nanotubes [56]. IMUs [57] are also a widely-
adopted method for acquiring kinematic information for finger
movements. sEMG shows advantages in monitoring muscular
movements, and the commercial product MYO also made it
popular at a low cost [58], [59]. In addition, Chen et al. [60]
proposed using a camera on the wrist to sense the background
changes and infer hand movements. Notably, a hybrid method
of the above sensing technologies including sEMG provides
a good solution. For example, Chen et al. [9], [61], [62]
proposed a framework for sign language recognition based
on the information fusion of a three-axis accelerometer and
multi-channel sEMG modeling the sign language into basic
kinematic components, including hand shape, orientation, ro-
tation, and trajectory. This framework was also adopted by Wu
et al. [63] for American sign language recognition. This topic
has gained increasing attention and was reviewed recently by
Kudrinko [64]. In this application, the most basic target gesture
sets were the 10 American digits [65] and 26 American sign
language letters [66]. Higher target gesture sets are subwords
[54], words [62], [63], and sentences [61].

E. Human Computer Interaction

One important aspect in consumer electronics is gesture-
based human-computer interaction, which is an intuitive way
of expressing user ideas that can enhance the understand-
ing between humans and smart devices. Recent advances in
VR/AR technologies have increased demands for more natural
and immersive interaction between users and the devices.
Since vision-based hand gesture recognition has some inherent
defects like no haptic feedback, targets out of camera view,
and occlusion, wearable interfaces can not only overcome
the occlusion problem from a sensing perspective but also
can be combined with haptic feedback to form a closed-
loop immersive experience. However, currently, most available
commercial VR sets are composed of a head-mounted display,
two controllers, and a base station [67] and can only recognize
6-DoFs movements base on IMUs or cameras. However,
the newest VR games require finger movement recognition,
and only a few leading products such as the Oculus Touch
and Valve Index can recognize a handful of simple finger
movements like shooting and grabbing. Compared to the
conventional joystick input device, hand gesture control is
intuitive, relatively easy to learn and use [68]. Examples
of commercial hand gesture recognition devices in VR/AR
applications include Knuckles controllers (controllers for the
Valve Index) and MYO armbands (sEMG armband).

Smartwatches are another emerging field to apply hand
gesture recognition technology. Since smartwatch screens are
too small for many touch-based gestures, hand gestures for
operation or typing are a potential alternative. However, pop-
ular hand gesture recognition methods, including sEMG and
forcemyography (FMG), require extra components and a large
space, which most smartwatches cannot accommodate. Some
novel research has reported hand gesture recognition methods
without extra components, using existing smartwatch sensors
including photoplethysmography (PPG) [69], microphones
[70], and bone-conducted sound sensing [71].

F. User Authentication

Privacy and security are important issues during communi-
cation process. Recently biometric passwords based on face
and iris have been applied in real-life scenario while other
novel biometrics-based modalities including EEG [72], gait
[73] have gained increasingly popularity in research area.
Due to the individual uniqueness of biological signals, hand
gestures can also be used as passwords for electronic equip-
ment (user authentication/identification). For wearable devices,
current research mainly focuses on sEMG signals [74], [75];
other sensing modalities like electrical impedance tomography
(EIT) [76] and IMU [77] also have the potential to be used for
user identification. With the development and popularization of
wearable devices, wearable user authentication/identification
methods will get more attention from both equipment suppliers
and consumers.

III. SENSING MODALITIES

Hand gesture changes are caused by muscle contractions
and tendon slippage in the arm and wrist and are accompanied
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by blood vessel deformation and bone movement. During
hand and finger movements, many biological and physical
characteristics change. These changes can be captured by
electrical, mechanical, acoustical/vibratory, or optical sensing
methods and used as input for classification and regression
algorithms. In this section, each of these types of sensing
principles is introduced along with representative sensing
modalities, measured biological characteristics, and interface
locations (Table I).

A. Electrical Sensing

Fig. 2. Representative electrical sensing approaches: (a) sEMG armband
developed by CTRL-Labs [145], (b) high-density sEMG [80], (c) electrical-
contact-resistance-sensing [87], (d) EIT [84], (e) capacitance-sensing [89].

Muscle contraction is triggered by electrical signals and
leads to impedance distribution changes (Fig. 2). These elec-
trical signals and impedance distributions can be recorded
by sEMG and EIT. Due to the high information transmis-
sion rate and high time resolution, sEMG is the most ex-
tensive and in-depth investigated method in wearable hand
gesture recognition. sEMG monitors and records the change
in electrical signals through electrodes placed on the skin or
inside the muscle tissue. It contains important information
about muscle contraction, which drives hand movement. There
are mainly three different layouts of sEMG: muscle-targeted
layout (placing one sEMG sensor on each specific muscle
to monitor its contraction [9]), low-density surface electrode
layout (assembling several sEMG sensors in a wristband or
a sleeve to recognition gestures or motion [6], [10]) and
high-density electrode layout (using dozens of closely spaced
electrodes to collect sEMG signals in an area [79]). The
current and potential application of the sEMG method includes
prosthetic control [146], game or computer controls (MYO
wristband), user authentication [74], [75]. The advantage of
the sEMG method is that it is neuromuscular measurement
and contains abundant and fundamental information about
muscle contraction. Also, as one of the most used gesture
recognition methods, numerous commercial sEMG acquisition
devices including Delsys and Biometrics can provide quick
and stable measurement and various algorithms have been
extensively explored. The disadvantage of the sEMG method is
that sEMG has some inherent defects like subject dependency
and non-stationarity [147], [148]. Also, in real-application, the

sEMG will introduce interference due to muscle fatigue and
skin sweat [149].

EIT is a non-invasive tomographic method widely applied
in medical applications. Human body tissue has electrical
impedance, which varies with the structure of the body and can
be monitored by surface electrodes on the skin [150]. Based
on this, Yang et al. [82] proposed a prototype using the EIT
method to recognize hand gestures. The EIT method is highly
subject-dependent. The current and potential application of
the EIT method also includes user authentication [83]. The
advantage of the EIT method is that it has a high recogni-
tion accuracy in discriminating gestures with similar muscle
contraction [76], [85]. The disadvantage of the EIT method is
that EIT is highly sensitive to environmental interference (a
fluorescent light ballast will cause persistent electromagnetic
interference) and can impede contact with the skin [82].

Some hand gestures could lead to skin deformation, which
can also be used as a feature to recognize hand gestures.
There are two types of electrical sensing methods that can
capture this deformation: electrical contact resistance sens-
ing and capacitance sensing. Electrical contact resistance is
dependent on contact shape, dimensions, and the magnitude
of the mechanical contact load [151]. Kawaguchi et al. [87]
proposed an electrical-contact-resistance-sensing hand gesture
recognition method that utilized the corresponding dependence
of the resistance to detect skin deformation to recognize hand
gestures. The current or potential application of the electrical
contact resistance method includes finger joint angle estima-
tion [87]. The advantage of the electrical contact resistance
method is that it is lightweight (0.067 kg) and comfortable
(does not need strong contact pressure), making the device
acceptable to users. The disadvantage of the electrical contact
resistance method is that it will be seriously interfered by
irrelevant movements of the wrist, elbow, and forearm [87].
Capacitance sensing is an electrical sensing method built on
the principle that skin deformation will cause the distance
between two electrodes (which are attached to the skin or,
in some cases, skin also serves as an electrode) to change
and results in a change in capacitance [88]. The current or
potential application of capacitance sensing includes game
control, sign language translation, and object control [89].
The advantage of capacitance sensing is that it is ultra-low
power and does not require re-training before each use [89].
The disadvantage of capacitance sensing is that the sensing
performance may be interfered with by temperature, humidity,
and skin condition change. Also, after long-term usage, the
electrode can be contaminated by the skin, which will lead to
a decreases capacitive value [55].

B. Mechanical Sensing

Mechanical sensing can be divided into four types: FMG,
inertial measurement sensing, strain sensing and flex sensor
sensing (Fig. 3). FMG is the record of muscle activity in the
force domain and can be measured from the local pressure
change at the sensor location. Force-sensitive resistors are the
most commonly used method [92], [152]. In addition, force
sensors can also be an air-pressure sensor encapsulated in an
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TABLE I
SENSING METHODOLOGIES

Sensing Modality Sensing Principle Measured Biological Characteristics Wrist Arm Back of Hand Fingers

Electromyography(EMG) Electrical Electrical Activity [10], [78] [6], [9], [79], [80] [81]
Electrical Impedance Tomography(EIT) Electrical Skin Impedance [82], [83] [76], [82], [84]–[86]
Electrical Contact Resistance Sensing Electrical Deformation of Skin [87]

Capacitance Sensing Electrical Deformation of Skin [88]–[90] [91] [55]
Forcemyography(FMG) Mechanical Force of Muscles or Tendons [78], [92]–[97] [98]–[102]

Inertial Measurement Unit(IMU) Mechanical Movement [10], [103]–[105] [106], [107]
Strain Sensing Mechanical Deformation of Hand or Fingers [108] [65], [108]–[112] [108]–[110], [113], [114]

Flex Sensor Mechanical Flexion of Fingers [115]–[118]
Ultrasound Imaging(A-mode) Acoustical/Vibratory Myoarchitecture [119]–[121]
Ultrasound Imaging(B-mode) Acoustical/Vibratory Myoarchitecture [122]–[125]
Mechanomyography(MMG) Acoustical/Vibratory Vibration of Muscle Fibers [70], [104], [126] [127], [128]

Bone-Conducted Sound Sensing Acoustical/Vibratory Spectrum of Active Vibration [71], [129], [130] [131] [132] [130], [133]
Near-Infrared Spectroscopy(NIRS) Optical Vascular Deformation [134], [135]

Photoplethysmography(PPG) Optical Vascular Deformation [69], [136], [137]
Time of Flight(ToF) Optical Deformation of Skin [138], [139] [140], [141] [142]
Optical Fiber FMG Optical Force of Forearm [143], [144]

Fig. 3. Representative mechanical sensing approaches: (a-c) FMG [94], [96],
[102], (d, e) IMU [106], [107], (f) strain sensor [111].

air-bladder [98] or covered with an elastic rubber (TakkStrip,
TakkTile, USA). FMG sensors usually have a wristband-like
layout to recognize hand gestures or finger flexion angleds
[95], [96]. The current or potential application also includes
prosthetic control [153]. The advantage of the FMG method is
that compared with sEMG, the FMG has a better performance
in classification/regression and has been subjectively preferred
by users [153]. Also, FMG will not suffer from skin condition
change as sEMG does. The disadvantage of the FMG method
is that each FMG sensor needs an appropriate initial pressure,
which means that the user has to adjust the wristband carefully
to avoid it becoming too tight (causing an over-range error) or
too loose (causing a bad contact error). In prosthetic control,
this means that the FMG sensor array needs to be customized
according to the shape of the residual limb. Additionally, force-
sensitive resistors also have drift problems and are vulnerable
to electromagnetic interference problems [154].

Inertial measurement sensing is a kinematic sensing method,
take the IMU as an example, an IMU consists of a 3-axis
accelerometer, a 3-axis gyroscope, and sometimes a 3-axis
magnetometer. The current or potential application of the IMU
method contains two primary layouts: put one IMU on each
hand movement’s DoF [106] or use a single IMU as a part
of the sensor fusion system to help deal with dynamic hand
gestures [10]. Additionally, an IMU’s components can also

be used separately (e.g., magnetic sensors can be put on
fingers to monitor finger movement and serve as a handwriting
input device [155]). The advantage of the IMU method is
that it is sensitive and generally achieves a high accuracy
in dynamic hand gesture recognition. Also, the IMU sensor
is cheap, easy to use. If the subject performs hand gestures
according to one standard protocol, the IMU signal will have
almost no individual difference. The recognition accuracy of
IMUs is largely dependent on the wearing position of the
sensor. When performing the same hand gesture, different
body positions (e.g., fingers, wrist, forearm) will have signif-
icantly different kinematics characteristics, which may result
in a different systematic accuracy. In addition, due to loose
wearing conditions and long-time use, sensor shifting may also
cause differences in training and testing data, thus resulting in
reduced recognition accuracy. The disadvantage of the IMU
method is that the IMU-based hand gesture recognition method
is easily interfered with by human body motion including
waving the arm and walking.

Strain sensors are typically attached to the skin of the fingers
and hand. Since the strain sensor is tightly attached to the
skin, any finger or hand movement will cause the reading of
the strain sensor to change, and thus the hand gesture can be
recognized. An ideal strain sensor would be cheap, invisible,
thin, lightweight, stretchable, and easily attachable to the skin
[111]. The potential application includes smart gloves. The
advantage of strain sensors is that they usually have higher
resolution [111] and higher robustness (not susceptible to elec-
trode shift and electronic interference from the environment)
[65]. The disadvantage of strain sensors is that due to the
limitations of materials and fabrication, these features (cheap,
invisible, thin, lightweight, stretchable, and attachable) usually
cannot be achieved simultaneously and thus hinder practical
adoption. In addition, strain sensors sometimes have liquid
leaking problems [109], poor stability (sensing characteristics
can change as the number of uses increase) [111], [156], short
service life (only weeks) [110], [157], and mass-production
problems [109].

A flex sensor is a thin strip-like resistor that can be used
to measure the angle of bending, and different angles will
cause different levels of resistance. Flex sensors are usually
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embedded in a smart glove with a flex sensor corresponding
to each finger [116]–[118]. One potential application reported
by Jani et al. [117] is sign language translation. The advantage
of the flex sensor is that it is cheap, easy to manufacture, and
easy to use. The disadvantage of the flex sensor is that its
angle measurement accuracy is relatively low.

C. Acoustical/Vibratory Sensing

Fig. 4. Representative acoustical/vibratory sensing approaches: (a) ultrasound
imaging (A-mode) [119], (b) ultrasound imaging (B-mode) [123], (c) MMG
[126], (d-f) bone-conducted sound sensing [71], [130], [132].

The physical structure of the wrist and forearm change will
cause different echoed acoustic characteristics generated by
the outer source equipment or the muscle itself, and thus
acoustical sensors can be used in hand gesture recognition.
Currently, there are three main acoustical sensing methods:
ultrasound imaging, mechanomyography, and bone-conducted
sound sensing (Fig. 4). Ultrasound imaging can be used to
detect morphological changes in muscles with high spatial
and temporal resolution [125], [158]. There are two kinds
of ultrasound imaging: A-mode (portable, one-dimensional
sonomyography) [119] and B-mode (high-resolution, two-
dimensional sonomyography) [125]. Since both the superficial
and deep muscles control human hand motion, and unlike
sEMG, ultrasound can capture deep muscle activity and su-
perficial muscle activity simultaneously. The advantage of the
ultrasound method is that it has a higher spatial resolution and
recognition accuracy [125], [159], [160]. The disadvantage of
the ultrasound method is that the devices are usually bulky and
expensive, power-consuming, and require a coupling medium
[123].

Finger or hand movement will cause the wrist geome-
try structure to change and generate vibration [161], which
can also be regarded as sounds to some extent [128].
Mechanomyography (MMG) is a record of low-frequency vi-
bration made by skeletal muscle [162], which is highly related
to muscle contraction and hand movement. MMG can be
recorded by accelerometer [163] (the accelerometer is used to
measure vibration), microphones [70], [164], and piezoelectric
sensors [165]. The advantage of the MMG method is that it
does not suffer from the skin condition like sweat and can
serve as a supplement to the sEMG [149]. The disadvantage
of the MMG method is that it has motion artifacts and a low

signal-to-noise ratio, and it often experiences interference from
background noise [166], [167].

Bone-conducted sound sensing is an active-vibration-based
hand gesture recognition method. Unlike MMG, bone-
conducted sound sensing needs an active vibration source
rather than merely measuring the sounds and vibrations in-
trinsically generated by muscle structural deformation. Bone-
conducted sound sensing consists of a contact receiver (micro-
phones or piezoelectrics) and vibration actuators. Morpholog-
ical changes of muscles will affect the spread of the active vi-
bration and will cause the received vibration’s characteristics,
including amplitude [129], [131], [133] and power spectral
density [71], to change. The advantage of bone-conducted
sound sensing is that by using an unnoticeable vibration
(which enables sensing) and a noticeable vibration (which pro-
vides haptic feedback) simultaneously [133], bone-conducted
sound sensing can achieve an immersive configuration of
human-computer interaction more easily. The disadvantage of
bone-conducted sound sensing is that the generated sound can
be heard by humans and thus becomes noise and annoying.

D. Optical Sensing

Fig. 5. Representative optical sensing approaches: (a) NIRS [135], (b) PPG
[136], (c) ToF [142], (d) optical fiber FMG [144].

Optical sensing is lightweight, portable, and easy to inte-
grate into consumer electronics such as a smartwatch (Fig. 5).
The most representative sensing method for optical sensing is
PPG. A PPG sensor is a common optical sensor that can be
seen on the back of nearly every smartwatch and is used to
monitor pulse rate. The PPG sensor is made of an LED (light-
emitting diode) to generate light and a light intensity sensor
to monitor reflected light. The light that comes from the LED
will be absorbed by the blood in the blood vessel, and thus the
larger the blood vessel, the more light it absorbs and the less
it reflects. Zhao et al. [69] found that hand movement would
compress the arterial geometry and cause significant motion
artifacts to the blood flow. These motion artifacts can be
monitored by the PPG sensor, and the gesture-related signals
can be extracted from it [136]. The potential application of the
PPG method is that it can be used as a low-cost fine-gained
gesture recognition method on the commercial smartwatch.
One great advantage of the PPG method is that it is cheap,
lightweight, and commonly installed on a smartwatch.
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Other optical sensing methods can also be used in hand
gesture recognition. For example, muscle contraction leads to
variations in speckle field intensities, and these variations can
be monitored by an optical fiber specklegram sensor. Wu et al.
[144] used this phenomenon to develop a hand gesture recog-
nition system. Based on the same theory, optical sensors used
in other fields can also be used for hand gesture recognition
if they can capture hand-gesture-related characteristics. Near-
infrared spectroscopy (NIRS) is a commonly used chemical
component analysis method for ambulatory monitoring of
tissue oxygenation and haemodynamics [168]. Hand gesture
changes lead to vascular deformation and cause hemodynamics
variations, and thus, they can be captured by the near-infrared
sensor and recognized by NIRS analysis [134]. A time-of-
flight (ToF) sensor is another commonly used optical sensor
to measure distance, and it was previously used to measure the
depth information of an image. Since the muscles and bones
are linked to the skin, hand gestures cause skin deformation
[142]. By measuring the distance between the skin and the
sensor, the skin deformation can be determined, and thus,
the hand gesture can be estimated [140]. Note that several
research studies [138]–[140] using near-infrared sensors were
categorized as ToF method in this paper because these studies
merely used near-infrared sensors to measure distance, rather
than analyzing the optical characteristics of infrared light
scattered by human tissue.

These methods are new to hand gesture recognition and
lack further research. However, these optical sensing methods
have several common drawbacks, including susceptibility to
the interference of ambient light noise [135] and high sen-
sitivity to sensor location (thus, they must be re-calibrated
before every use), skin condition, and intense body move-
ment(e.g.,coughing) [112], [137], [144]. These drawbacks
make the optical sensing methods hard to maintain recognition
accuracy in practical applications. However, optical sensors
are often compact and easy to be integrated into consumer
electronics, making optical sensing an ideal potential solution
for commercial wearable hand gesture recognition.

E. Comparison

For a better understanding of the advantages and the dis-
advantages of these sensing modalities, this paragraph gives
a brief comparison of the above sensing modalities. The
comparison will be conducted on three aspects: sensitivity,
wearability, and maturity.

For sensitivity, the sEMG (electrical), EIT (electrical), FMG
(mechanical), ultrasound imaging (acoustical), NIRS (optical),
and PPG (optical) methods directly measure the muscular
movement and thus have a high sensitivity and resolution. The
sensitivity of the IMU and strain sensing method depend on
the device setup. For IMUs, sensors placed on finger segments
will have a high sensitivity to hand gestures, but sensors placed
on the wrist will not. For strain sensing, it depends on the used
materials and can vary greatly. Methods that measure the skin
deformation (electrical contact resistance sensing, capacitance
sensing, ToF) or have a low signal-to-noise ratio (MMG, bone-
conducted sound sensing) are usually less sensitive.

For wearability, the optical sensing methods usually have
the smallest size and can easily be integrated into commercial
devices. The electrical methods, FMG, MMG, and bone-
conducted sound sensing can be made into wristband types,
which is also acceptable to commercial devices. The strain
sensing, flex sensor, and glove-layout IMU sensors are usually
made into a glove shape; this can be acceptable for patients
and industrial applications but hard for consumers to use.
The ultrasound imaging method has the lowest wearability;
although the ultrasonic probes and processing circuits are
becoming smaller, it still needs a coupling medium.

For maturity, methods including sEMG, FMG, IMUs, flex
sensor, and ultrasound imaging have lots of research and
commercial devices, which will make it easier for the re-
searcher to conduct experiments. However, other methods
like electrical contact resistance sensing, capacitance sensing,
strain sensing, MMG, bone-conducted sound sensing, and
optical fiber FMG are only at the proof-of-concept stage. Other
sensing modalities like EIT, NIRS, PPG, and ToF have mature
applications in other areas, but applications for hand gesture
recognition have just begun.

IV. ALGORITHMS

Hand gesture recognition algorithms can generally be cate-
gorized as solving the problem of either classification of hand
poses/trajectories (e.g. whether the hand is gesturing the OK
sign or the hand is moving in a cycle form) or regression of a
continuous parameter (e.g., continuous finger flexion angles or
continuous wrist deviation angles). Generally, algorithms can
be divided into two types: conventional pattern recognition and
deep learning techniques (Fig. 6).

A. Conventional Machine Learning

Conventional techniques for classification and regression
use a raw signal, handcrafted feature extraction, model train-
ing, and testing schemes.

Data pre-processing, which can include filtering, normal-
ization, and window segmentation, is optional between the
raw signal and feature extraction procedures. For example,
for human sEMG signals, the effective spectrum is typically
20-500Hz, and thus, a bandpass filter together with a notch
filter is applied to remove low frequency drifting or power
line noise. Normalization is used to make the range of raw
signals the same scale, which can generally accelerate the
training process. There are two kinds of normalization: min-
max normalization, which maps the features to a certain range
like [-1,1] to transfer the sensor values from different sensing
modalities to the same scale, and z-score normalization, which
transfers the features to similar distribution (with mean 0
and standard deviation 1) to shorten training convergence
time. Window segmentation is commonly used to segment
continuous data into basic analyzing units. All of the following
procedures are then performed within the segmented window.
For continuous processing of all the data, the segmented
windows can slide across the time series data with an overlap,
the length of which can influence the output frequency and
the similarity within the adjacent windows.
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Fig. 6. Algorithms for hand gesture recognition and finger angle estimation. Sensing signals come from different wearable interfaces across various locations
on the arm, hand, and fingers. Conventional machine learning and deep learning algorithms typically rely on feature extraction and model training to perform
hand gesture pattern recognition. Ultrasound, soft sensing, finger IMU, and sEMG armband images come from [119], [65], [169], and [170], respectively.

Feature extraction is crucial for conventional pattern recog-
nition. Generally, the features are handcrafted and can vary
based on the source signal, usually covering time domain,
frequency domain, or a combination of two. Features can be 1)
statistics, including the mean, standard deviation, or kurtosis;
2) structural parameters, including the slope and intercept of
the linear fitting [119]; or 3) task-specific, like zero crossings,
waveform length, or slope sign changes for sEMG signals.
The features are largely dependent on prior knowledge and
have shown effectiveness in conventional application scenar-
ios. Some research studies first chose as many features as
possible and then applied a feature selection tool to optimize
the feature sets and processing procedures [65], [104], [171].
Three different feature selection methods are commonly used:
filter, wrapper, and embedded methods.

For classification tasks, model training involves classical
machine learning schemes and usually includes linear dis-
criminant analysis, support vector machines, random forests,
multilayer perceptrons, naive Bayes classifiers, decision trees,
k-nearest neighbors, and hidden Markov models. The no free
lunch theorem indicates that there is no universal model
suitable for all tasks and datasets. Thus, most researchers
have tried several different algorithms [172] and selected a
suitable one based on their requirements, including accuracy
and computational expenses. In addition, parameter tuning is
preferred to optimize the model for the tasks.

Various classification models can be modified to fulfill the
regression tasks, including multiple regression [87], Gaussian
process regression [121], support vector regressors [173],

random forest regressors [96], and neural networks [94].
In addition, for dynamic gestures when the hand trajectory is

used to circulate a number, because the performing times and
signal lengths are different, dynamic time warping [174]–[177]
is typically used to measure the similarity between a template
and given sequence. For prosthesis control, a simultaneous
and proportional algorithm can be achieved through non-
negative matrix factorization in a semi unsupervised learning
method [178]. Non-negative matrix factorization is applied
in sEMG signals and motivated by muscle synergy theory.
Raw signals from multiple channels of the interfaces can be
factorized into muscle synergy matrix W , which reflects the
weight for muscle involvement under a certain gesture, and
matrix F , which reflects the activation level for each DoF.
A short and simple calibration is needed for determining W ,
and F can be calculated for each DoF activation when in the
training datasets. It is worth noting that this algorithm does not
need force signals for training, only requiring the knowledge
of which DoF is activated. As a result, simultaneous and
proportional control signals for multiple DoFs can be achieved
through semi-unsupervised learning.

B. Deep Learning

However, the handcrafted features cannot guarantee a global
optimization and sometimes result in large performance vari-
ation based on different chosen features. Also, handcrafted
features primarily rely on expert knowledge and often only
extract shallow features, resulting in limited capability in
fulfilling simple tasks. With the advancements in deep learning
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techniques, an increasing number of research studies use a
convolutional neural network based solution. The flexibility in
the neural network structure can enable the target output to be
a classification problem, a regression problem [179], or a com-
bination [180]. CNN has proved to outperform most conven-
tional statistical-learning-based methods for image recognition
problems and was initially designed for image classification or
natural language processing [181], [182]. Therefore, directly
adopting deep learning techniques in the field of wearable hand
gesture recognition may not guarantee a better performance
than conventional methods. The following factors should be
considered when evaluating whether to adopt deep learning:
1) the volume of datasets, 2) the task complexity, 3) other
demands (including robustness or few-shot learning) beyond
the classification or regression accuracy, and 4) the expense
of real-time computational expenses.

After the evaluation, gestures can change with time and the
recorded signals from the interface also vary with time which
can be processed by commonly used time-series processing
procedure. Thus, 1D CNN [183] or recurrent neural networks,
including long short-term memory (LSTM) [184], are often
a suitable choice, and are quite common for a spatial-sparse
signal source with limited channels (usually less than 10).
For example, Panwar et al. [30] proposed an algorithm with
two 1D-CNN layers for processing one IMU signal on the
forearm and achieved 97.89% accuracy for 3 semi-naturalistic
forearm movements. Zhu et al. [185] used bi-directional LSTM
algorithm for decoding one IMU data from the smartwatch and
successfully recognized 5 gestures with 96% accuracy. Kim
et al. [186] recorded one IMU signals from a wearable band
and then used the the architecture combining convolutional
layers and gated recurrent unit (GRU) layers to recognize 9
arm gestures with 96.20% accuracy. However, these methods
may neglect dependent relationships between dimensions and
thus cannot fulfill challenging tasks [187].

Another solution is finding how to transform the low di-
mensional wearable sensor data into an appropriate form of
high dimensional “image” data to seamlessly utilize the deep
learning techniques. The answer varies based on the signal
type, and the following parts introduce several representative
explorations. One possible approach to expand the low dimen-
sional data is to include longer time data to expand the image
height. For example, in terms of the capacitance sensing,
Khodabandelou et al. [90] used a 24-capacitance-sensor array
and incorporated previous sequences to construct a 2D array.
Then, an attention-based GRU neural network was utilized and
realized 96% accuracy for 12 gestures. Similarly, Truong et al.
[87] expanded the 15-channel data with a 4-second time frame,
resulting in a 100×15 matrix, and then used CNN to realize a
0.95 F1-score for 15 gestures compared with 0.886 for random
forest. Zakia et al. [188] proposed the FMG-based 2D-CNN
algorithm to recognize 6 grasping gestures with 96% accuracy
via a re-arranged data format to 16×25, which represented the
sensor numbers and sampling window dimensions.

Another approach is to utilize the flexibility of the neural
network for fusion with other sensing modalities. Yuan et
al. [189] proposed using flex sensors for collecting bending
angles, IMUs for arm postures, and CNN for feature extraction

and fusion with LSTM to realize 99.93% for America signal
language. A recent paper in Nature Electronics [56] also
demonstrated that flex sensors can be combined with visual
data via a fusion part in CNN with 96.7% accuracy in a
dark environment. Kanokoda et al. [190] proposed using strain
sensors and time delay neural networks (TDNN) to achieve
84.6% accuracy for three finger flexion/extension. Similarly,
FMG can be combined with other sensing modalities. For
example, Li et al. [191] proposed using a wrist-worn pressure
sensor as an enhancer for ultra-wide-band doppler radar and a
hierarchical classification model with the first stage classifier
of SVM, resulting in 15% enhancement. Similarly, Liang et
al. [192] also demonstrated that FMG can help to enhance the
radar performance from 76.7% to 92.5% with 4 gestures via
a multi-layer SVM data fusion algorithm.

For the relatively complex signal source like sEMG, which
contains abundant information both in time domain and space
domain, there are more advanced deep learning algorithms.
For the time domain aspect, previous adding time dimension
can also work for sEMG. Rehman et al. [193] utilized 150ms
eight-channel sEMG data to form a 30×8 image. For the space
domain aspect, high density sEMG offers another dimension
in constructing image. Geng et al. have performed extensive
investigations on this direction based on transforming the high-
density sEMG signals into an image. For instance, Geng et al.
[43] directly transformed the 128 channel sEMG voltage at
each sampled datum to an 8× 16 instantaneous sEMG image
and then applied a linear transformation to form a grayscale
image covering the range of [0,1]. Furthermore, the 3D CNN
structure could not only take an instantaneous sEMG image
into consideration but also consider how the image evolves
with time [194]. Also, Wei et al. proposed a multi-stream
CNN [195], [196] which consisted of a decomposition stage to
learn critical features and fusion stage for final recognition of
gestures, achieving 95.4% accuracy in CSL-HDEMG dataset.
Hu et al. [197] proposed an attention-based hybrid CNN-RNN
algorithm and achieved 87% in the NinaPro dataset. Recently,
Moin et al. [198] developed custom flexible sensor with 64
electrodes and a hyperdimensional computing algorithm which
projected the sEMG data into hypervectors, achieving 13
gestures recognition with 97.12%. Xie et al. [199] compared
the performance using deep learning methods including 1D
CNN, LSTM, one convolutional layer and one recurrent layer
(C-RNN) and found 3+3 C-RNN (3 convolutional layers and 3
recurrent layers) achieved the best performance over 3 datasets
(eg. 83.61% for subdataset 5 of the Ninapro database).

In addition, there are also other deep learning methods
which are different from convolutional neural networks. For
example, Pan et al. [200] proposed using deep belief networks
(DBN), and achieved 12 subtle gestures with 80.04% accuracy.
The algorithm first used handcrafted features and then used
a DBN which includes multi-layers of restricted Boltzmann
machines (RBMs). Similarly, Yu et al. [201] also used a
DBN and feature-level fusion strategy and achieved 95.1%
accuracy for Chinese sign language recognition 150 subwords
recognition. Apart from that, a deep-forest classifier, which
is composed of decision tree and ensemble learning with
cascade structure, is also used [201] and and has achieved
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96% accuracy for 16 gestures.

V. EMERGING RESEARCH DIRECTIONS

A. Higher Accuracy for Larger Gesture Sets

Although the classification accuracy is high for certain
applications, the total number of gestures tend to be lim-
ited [10], [71], [92], [98]. However, the limited gesture sets
cannot realize various and intuitive control of hands as the
hand is dexterous, not only possessing 21 DoFs for fingers
but also showing 3 DoFs translation and 3 DoFs rotation
in the wrist. Realizing high accuracy when the number of
gestures increases is challenging because the hand structure
is compact with 3D morphological structure and placing the
sensor on a certain spot cannot fully detect the underlying
changes especially for some similar like the letter U and V
in American sign language. To increase gesture sets while
maintaining high accuracy, the following are worth investi-
gating. 1) Finding more powerful sensing techniques could
help increase capability. For example, the ultrasound mode
B, previously used in medical imaging areas, was recently
investigated by McIntosh et al. [123] to realize 99% accuracy
for static hand poses recognition via the musculature changes
in real time. In addition, high-density sEMG sensors are
powerful in investigating the physiological process of muscle
contraction [202] but currently limited in laboratory or medical
use. Future research holds the potential to customize local
high density [99] based on the demand, which could increase
sensing capability. With more detailed information like the
morphological muscle structure or high-density sensors, the
capability can be further expanded. 2) Multi-sensing fusion
can be another potential solution for increasing capability,
because utilizing more sensing modalities can potentially
overcome limitations of single sensing and thus guarantee a
higher capability. Currently, there are some pilot investigations
towards this direction [78], [203] like fusing the sEMG and
FMG from a hardware perspective and fusing the visual data
with strain data from algorithm perspective [56]. Especially in
the realm of sign language recognition, multi-sensing fusion is
not only useful for more accurate hand gestures recognition but
also can integrate the information from face expressions [53].
3) Standardized protocols and datasets can facilitate exploring
and adopting more advanced algorithms. It is evident that
more data are crucial for the advanced algorithms and final
performance in pattern recognition. One key problem that
hinders big data acquisition is the lack of a universal standard
for experimental setups and protocols. Because the sensing
modalities vary, every research group builds their own hard-
ware and collects their own data, and thus a universal standard
is required. ImageNet, which not only increased classification
accuracy but also boosted the research community, could
provide useful insights for wearable hand gesture recognition;
specifically, large volume and standard data sets are needed
to push this research forward. More advanced algorithms like
ResNet could then be used to expand capability towards the
reproduction of every hand movement.

B. Increased Robustness

Although the first sEMG-controlled prosthesis was devel-
oped in the last century , there is still a huge gap between
humankind-developed prosthesis and human hands. Robust-
ness is still one of the main obstacles that hinders wearable
hand gesture recognition devices from widespread and prac-
tical use. In this review, the word “robustness” is defined as
the ability to maintain recognition accuracy against adverse
factors. Since biological signals used for hand gesture recog-
nition are highly subject-specific, changing the user or wearing
locations will require the model to be re-trained, which usually
takes a long time and can easily degrade the user experience.
For patients with dyskinesia, deficit limb motor ability will
cause higher recognition error, so additional methods may be
needed to increase recognition accuracy [204].

Sensor fusion is a promising approach to generate richer
signal content and increase robustness from the user side. For
example, for sEMG-FMG, the advantage of sEMG is that
it contains abundant information directly related to muscle
activation and the advantage of FMG is that it is more stable
and immune to bad skin conditions (e.g., sweat) [78]. At the
same time, force signals are more sensitive to gestures with
low strength (the force level of hand grip is less than 10kg),
while the myoelectricity signal is more sensitive to gestures
with high strength (the force level of hand grip is more than
20kg) [203].

Hand gesture recognition robustness is closely tied to the
corresponding machine learning algorithms selected for each
application. Most machine learning approaches work on a
basic assumption that training data and test data are drawn
from the same feature space and have the same distribution
[17]. Nevertheless, this assumption does not always hold true
in biological signals, especially when facing electrodes shifts
or different users scenarios. To maintain a high performance,
it practically requires to collect large amounts of data and
train a new model for a single user, which is extremely time-
consuming and labor-intensive. Transfer learning can solve
this problem in two ways: 1) parameter/model-based transfer
learning can be used to adjust existing model parameters or
reform the structure to suit a new task, which can save the cost
of training a model from scratch and improve the recognition
accuracy [205]. 2) domain adaptation (feature-based transfer
learning), can be used to solve the data distribution problem
caused by inter-user [206], [207], inter-session [207], [208], or
interface position shift [209], [210] to reduce training time and
improve recognition accuracy [211], [212]. These two methods
are typically used simultaneously. In the design of deep trans-
fer neural networks, adaptation layers are included to solve
the distribution problem [213], [214], and fine-tuning or other
transfer methods are used to update the existing model [16],
[215]–[217]. Beside sEMG, transfer learning as an universal
method to improve the preference of the machine learning
algorithm, can also be used in other sensing modalities like
PPG [137], FMG [188] and IMU [218].

For practical use, wearable interfaces also suffer from sensor
position shift, when a sensor position changes between trials,
which leads to the change of signal characteristics and thus
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affects the accuracy of hand gesture recognition. Interface
position prediction algorithms are based on two assumptions:
that muscle contraction involves activation sources, and that
the sEMG signal measured from an electrode is a combination
of source activations [219]. Since the source parameters can
be identified before the shift, the electrode location after the
shift can be predicted [220]–[222]. Using high-density sensor
electrodes [223] is an alternative way to solve the shift problem
[224]. Conventional sEMG interfaces use four to six electrodes
and after the shift happens, the recognition system loses the
original and known signals and faces a different, unknown
signal. By using high-density sensor electrodes and combined
with approaches like the gray-level co-occurrence matrix, the
recognition system can still get the original signal; only the
corresponding relationship between the signal and electrodes
is changed [79].

C. Soft Systems

Fig. 7. Emerging studies of soft systems: (a) stretchable bioelectronics [225],
(b)-(d) soft sensing e-skin/e-tattoo [65], [114], [203], (e-f) soft circuits [226],
[227], (g) skin-integrated haptic device [228], (h) soft energy harvesting
systems [229].

Another vital direction for the future development of
hand gesture recognition device is soft systems. Conventional
wearable devices are composed of hard metal and plastic
components. However, human tissue is soft, and thus the
hard interface may introduce several problems. 1) Due to
mismatch in device and skin hardness, the user may feel
uncomfortable after long-term use. 2) The hard interface can
result in insufficient contact with curved and soft human
skin which may cause performance deterioration. 3) Because
the Young’s modulus of hard materials is not in the simi-
lar order of magnitude to the skin, the hard interface can
not be stretched and moved with the skin smoothly and
thus incapable of measuring certain critical characteristics
like skin strain. Interestingly, the emerging advances in soft
systems and prototypes have provided new avenues for more
comfortable, and even imperceptible interfaces beyond the
conventional form of wrist and armbands (Fig. 7). Early on

Kim et al. [230] proposed the concept of epidermal electronics
which served as a foundation for more recent cutting-edge
applications of e-skin [56], [65], [114] and e-tattoos [203],
[231], [232] for sensing applications. For haptic feedback,
Yu et al. [228] introduced a skin-integrated interface which
can provide localized mechanical vibrations, and Chossat et
al. [233] proposed a soft skin-stretch device for augmented
proprioceptive feedback. Advances in flexible electronics make
it possible to develop soft circuits [226], [227], enabling a
more user-friendly prototype. For power supply, some pilot
research has even integrated energy harvesting systems based
on solar energy [229] or epidermal triboelectric nanogenerators
[234].

VI. CONCLUSION

Wearable devices for hand gesture recognition have not only
played an important role in VR/AR interaction but they have
also shown significant potential in rehabilitation, prosthesis
control, sign language recognition, and other human-computer
interaction areas. This paper presents an in-depth review
of potential application areas based on hand function and
the gap between human-human communication and human-
machine communication. Various state-of-the-art sensing in-
terfaces were discussed and categorized by sensing princi-
ples. In addition, irrespective of sensing principles, universal
conventional machine learning algorithms and emerging deep
learning methods were both reviewed. Finally, future potential
directions including larger gesture sets, increased robustness
and soft systems were discussed. This paper can provide
readers with a detailed understanding and insights on wearable
interfaces for hand gesture recognition.
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